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HIGH ORDER FINITE DIFFERENCE AND FINITE VOLUME WENO SCHEMES AND

DISCONTINUOUS GALERKIN METHODS FOR CFD

C}tI-WANG SHU"

Abstract. In recent years high order numerical methods have been widely used in computational fluid

dynamics (CFD), to effectively resolve complex flow features using meshes which are reasonahle for today's

computers. In this paper we review and compare three types of high order methods being used in CFD,

namely the weighted essentially non-oscillatory (WEN()) finite differ(_nce methods, the WENO finite volume

methods, and the discontinuous Galerkin (DG) finite element methods. W_ summarize the main features

of these methods, from a practical user's point of view, indicate their applicability and relative strength,

and show a few selected numerical examples to demonstrate their performance on illustrative model CFD

problems.

Key words, weighted essentially non-oscillatory, discontinuous Galerkin, finite difference method, finite

volume method, computational fluid dynamics

Subject classification. Applied and Numerical Mathematics

1. Introduction. In recent years high order numerical methods have t)een widely used in computational

fluid dynamics (CFD), to effectively resolve complex flow features. In this paper we refer to high order

methods by those with order of accuracy at least three. Traditionally, first and second order numerical

methods are often preferred in praetical calculations, because of their simplicity arid robustness (i.e. one can

always get some output, although it may not be very accurate). On the other hand, high order methods

often give the impression of being comt)licated to understand and to (:ode, and costly to run (on the same

mesh compared with lower order methods), and less robust (the code may blow up in tough situations when

the lower order nlethods still give stable output). In this paper, we hope to at least partially dispel this

impression about high order methods, using three typical types of high order inethods as examples.

Before we move on to the details of high order methods, let us point out that, at least in certain

situations, the solution structures are so complicated arid the time of evolution of these structures so long

that it is impractical to use low order inethods to obtain an acceptable resolution. Often such problems

involve both shocks and complicated smooth region structures, calling for special non-oscillatory type high

order schemes which are emphasized in this paper. A very simple example to illustrate this is the evolution

of a two dimensional periodic vortex for the compressible Euler equations, which was first used in [41]. One

could add a shock to this problem so that it becomes a t>roblenl of shock interaction with a vortex, which

is very typical in aeroacoustics. However we will consider the solution without a shock here as it admits

an analytically given exact solution, making it easier to compare numerical resolutions of different sehenms.

The Euler equations are given by a conservation law

u¢ + f(U)x + g(U)y = 0, (1.1.1)
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where

u = (p, pul,pu2,E),

f(u) = (pul,pu_ + p,p,nu.,,u_(E + p)), g(u) = (pu2,pu,u2,pu_ + p,u._,(E + p)),

Here p is the density, (ui, u.,) is the velocity, E is the total energy, p is the pressure, related to the total

energy E by

1 2 ')
E = P + + u5)

2- 1 2 p(ul

with _t= 1.4 for air. The periodic vortex problem is set up in a computational domain [0,10] x [0,10]. The

boundary condition is periodic in both directions. The initial condition is given by

(v,(x,y,O),u2(x,y,O)) = (1, 1) + 2_

T(x,y,O) : 1 ('7 - l'e'_el-_'] S(x,y,O) = 1,
8_zr2

where the temperature T and the entropy S are related to the density p and the pressure p by

T= -p,p S=_-,

and (Y,_) = (x - 5, y - 5), r 2 = _2 + _2, and the vortex strength e = 5.

It can be readily verified that the Euler equations with the above initial conditions adnfit an exact

solution which is convected with the speed (1, 1) in the diagonal direction. Because of the periodic boundary

condition, we can simulate this flow for a reD" long time. We first show the simulation results at _ = 10,

namely after one time period. When we perform the simulation with a second order finite difference MUSCL

type TVD scheme and a fifth order finite difference WENO scheme with the same uniform mesh of 802 points,

for this relatively short time, although the second order scheme gives inferior results comparing with that

of the fifth order scheme, Fig. 1.1, it may be m'gued that the second order scheme still gives an acceptable

resolution. If we increase the number of mesh points for the second order scheme to 2002 points, see Fig. 1.3,

left, then the resolution is roughly comparable to that of the fifth order WENO scheme using 80 '_ points in

Fig. 1.1, right. A two dimensional time dependent simulation with a 2002 mesh has 2.53 = 15.6 times more

space time mesh points than a 802 mesh. Considering that the CPU time of a fifth order finite differ_nce

WENO scheme is roughL" 3 to 8 times more than that of a second order TVD scheme on the same mesh

(depending on the specific forms of the schemes and time discretization), we could conclude that the second

order TVD scheme has a larger but still comparable CPU cost than the fifth order WENO scheme to reach

the same resolution, for this problem with relatively short time. When we look at the result at t = 100,

namely after ten time periods, the situation changes dramatically. On the same 80 _ mesh, one can see in

Fig. 1.2 that the second order finite difference TVD scheme has a much worse resolution than the fifth order

finite difference WENO scheme. Clearly the result of the second order scheme with this mesh for this long

time is completely unacceptable. This time, even if one increases the number of mesh points to 3202 for the

second order scheme (which makes the CPU time for such a run magnitudes more than that of a fifth order

WENO scheme on a 802 mesh), it still does not provide a satisfactory resolution, Fig. 1.3, right.. A more

refined mesh would not, be practical for three dimensional simulations. Clearly, in this situation the second

order scheme is inadequate to provide a satisfactory resolution within the linfit of today's computer.
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FIG. 1.1. Vortex evolution. Cut at x = 5. Density p, 802 uniform mesh. t = 10 (after one time period). ,qolid: exact

solution; circles: computed solution. Left: second order TVD scheme; right: fifth order WEN() scheme.
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FIG. 1.2. Vortex evolution. Cut at x = 5. Density p. 802 uniform mesh. t = 100 (after 10 time periods). Solid: exact

solution; circles: computed solution. Left: second order TVD scheme,; right: fifth order WENO scheme.

There are many high order methods being used in CFD. In this paper we only discuss three types of

them:

1. The weighted essentially non-oscillatory (WENO) finite difference methods;

2. The WENO finite volume methods;

3. The discontinuous Galerkin (DG) finite element methods.

These are methods suitable for solving hyperbolic conservation laws, such _ the compressible Euler equations

(1.1.1), or convection dominated convection diffusion problems, such as the compressible Navier-Stokes

equations with high Reynolds numbers. For such problems shocks and other discontinuities or high gradient

regions exist in the solutions, making it difficult to design stable and high order numerical methods.
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FIG. 1.3. Vortex evolution. Cut. at x : 5. Density p. Second order TVD scheme. Solid: exact solution; circles: computed

solution. Left: 2002 uniform mesh, t = 10 (after one time period); right: 320 .> uniform mesh, t = t00 (after t0 time per/ods).

Let us first give some historical remarks about these methods.

WENO sctmmes are designed based on the successful essentially non-oscillatory (ENO) schemes in [19,

43, 44]. The first WEN() scheme is constructed in [31] for a third order finite volume version in one space

dimension. In [23], third and fifth order finite difference WENO schemes in multi space dimensions are

constructed, with a general framework for the design of the smoothness indicators and nonlinear weights.

Later, second, third and fourth order finite vohune WENO schemes for 2D general triangulation have been

developed in [14] and [20]. Very high order finite difference WENO schemes (for orders between 7 and 11)

have been developed in [2]. Central WEN() schemes have been developed in [25], [26] and [27].

Both ENO and WENO use the idea of adaptive stencils in the reconstruction procedure based on the

local smoothness of the numerical solution to automatically achieve high order accuracy and non-oscillatory

property near discontinuities. ENO uses just one (optimal in some sense) out of many candidate stencils

when doing the reconstruction; while WENO uses a convex combination of all the candidate stencils, each

being assigned a nonlinear weight which depends on the local smoothness of the numerical solution 1)ased

on that stencil. WENO improves Ul)On ENO in robustness, better smoothness of fluxes, better steady state

convergence, better provable convergence properties, and more efficiency. For more details of ENO and

WENO schemes, we refer to the lecture notes [41, 42].

WENO schemes have been widely used in applications. Some of the examples include dynamical response

of a stellar atmosphere to pressure perturbations [13]; shock vortex interactions and other gas dynamics prob-

lems [17], [18]; incompressible flow problems [47]; Hamilton-Jacobi equations [21]; magneto-hydrodynamics

[24]; underwater blast-wave focusing [28]; the composite schemes and shallow water equations [29], [30], real

gas computations [32], wave propagation using Fey's method of transport [33]; etc.

Discontinuous Galerkin (DG) methods are a class of finite element methods using completely discontin-

uous basis functions, which are usually chosen as piecewise polynomials. Since the basis functions can be

completely discontinuous, these methods have the flexibility which is not shared by typical finite element

methods, such as the allowance of arbitrary triangulation with hanging nodes, complete freedom in changing

the polynomial degrees in each element independent of that in the neighbors (p adaptivity), and extrenmly



localdatastructure(elementsonlycommunicatewith immediateneighhorsregardlessof 'theorderof ac-
curacyof thescheme)andtheresultingembarrassinglyhighparallelefficiency(usuallymorethan99_ for
a fixedmesh,andmorethan80_:for adynamicloadbalancingwithadaptivenlesheswhichchangeoften
duringtimeevolution),see,e.g. [4].A verygoodexampleto illustratethecapabilityof thediscontinuous
Galerkinmethodin h-p adaptivity, efficiency in paralM dynamic load balancing, and excellent resolution

properties is the recent successful siinulation of the Rayleigh-Taylor flow instabilities in [36].

The first discontinuous Galerkin method was introduced in 1973 by Reed and Hill [35], in the frame-

work of neutron transport, i.e. a time independent linear hyperbolic equation. A major development of tile

DG method is carried out by Cockburn et al. in a series of papers [6, 7, 8, 9], in which they have estab-

lished a framework to easily solve nonlinear time dependent problems, such as the Euler equations (1.1.1),

using explicit, nonlinearly stahle high order Runge-Kutta time discretizations [43] (see section 2) and DG

discretization in space with exact or approxiinate Riemann solvers as interface fluxes and total variation

t)ounded (TVB) nonlinear limiters to achieve non-oscillatory prot)erties for strong shocks.

The DG method has found rapid applications in such diverse areas as aeroacoustics, electro-nmgnetism,

gas dynamics, granular flows, magneto-hydrodynamics, meteorology, modeling of shallow water, oceanogra-

phy, oil recovery simulation, semiconductor device simulation, transport of contaminant in l)orous media,

turl)omachinery, turl)ulent flows, viscoelastic flows and weather forecasting, among many others. For more

details, we refer to the survey paper [12], and other paimrs in that Springer volume, which contains the

conference proceedings of the First International Symposium on Discontinuous Galerkin Methods held at

Newt)ort, Rhode Island in 1999. The extensive review paper [11] is also a goo(t reference for many details.

This paper is written from a practical user's I)()int (ff view. We will not empimsize the discussion of

theoretical properties of the schemes. Rather, we will indicate the practical asI)ects in the imt)lenmntation

of the algorithms, their apt)lical)ility in different situations, and their relative advantages, and present a few

selected munerieal exalnples to demonstrate their performance on illustrative model CFD l)roblems.

2. Time discretizations. Before discussing the spatial discretizations, let us first discuss the time

discretization. For all three types of spatial discretizations discussed in this paper, we shall use the same

time discretization, namely a (:lass of high order nonlinearly stable Runge-Kutta time discretizations. A

distinctive feature of this class of time discretizations is that they are convex comhinations of first order

forward Euler steps, hence they maintain strong stability properties in any senti-norm (total variation norm,

maximum norm, entropy condition, etc.) of the forward Euler step. Thus one only needs to prove nonlinear

stability for the first order forward Euler step, which is relatively easy in many situations (e.g. TVD schemes),

and one automatically obtains tile same strong stability property for the higher order time discretizations

in this class. These methods were first developed in [43] and [40], and later generalized in [15] and [16]. The

most popular scheme in this class is the folh)wing third order Runge-Kutta method for solving

Itt = L(u, t)

where L(it, t) is a spatial discretization operator (it does not need to be, and often is not, linear!):

It(l) = u,_ + AtL(it',t')

?t(21 -----_ '/tn -t- lit'l)+4 _ AtL(u(l)'t'+ At)

_'n+' = 1_/' +2u(2)3 g + 2AtL(u(2),t'2+ At).

All the numerical examples presented in this paper are obtained with this Runge-Kutta time discretization.



3. Finite difference WENO schemes. A conservative finite difference spatial discretization to a

conservation law such as (1.1.1) approximates the derivative f(u). by a conservative difference

f(u).l_=x,~ _xTx

where ]j+1/2 is the numerical flux, which typically is a Lil)schitz continuous function of several neighboring

values ui. g(u)u is approximated in the same way. Hence finite difference methods have the same format

for one and several space' dimensions, which is a big advantage. For the simplest case of a scalar equation

(1.1.1) and if if(u) >_ 0, the fifth order finite difference WEN() scheme has the flux given by

f j+,/2 = w,fJl+'l/2 + w2fJ_),/2 + w3/J3),/2

where +j+l/'2 are three third order fluxes on three different stencils given by

fj(1). 1 7 llf u
+I/2 = _f(uj-2) - _f(uj_,) + -6- ( j)'

f j2) 1 5 1
+1/2 = -_f(uj-l) + _f(uj) + 5f(uj+l) ,

1 5 1/?
+1/2 = "_f(uj) + -_ffuj+l) - -_f(n)+2),

and the nonlinear weights wi are given by

d'i %
_Ui = 3 , _t," --

Zk=l ?fYk (Z + fit-) 2'

with the linear weights % given by

1 3 3

= iii' _' = _' _':'= _'

and the smoothness indicators _tk given by

13 1
f:_l -- _ (f(uj-2) -- 2f(Uj-l) + f(uj)) 2 + -_ (f(uj-2) -- 4f(uj-1) + 3f(uj)) 9

13 1
/_2 = __ (f(uj-l) - 2/(u j) + f(uj+l)) 2 + _ (f(uj-1) - f(uj+, ))2

13 1
'& = i5 (f("J) - 2f(uj+_) + f(_j+_))_ + a (3f(_j) - 4f(uj+l) + f(uj+2)) 2 .

Finally, g is a parameter to avoid the denominator to become 0 and is usually taken as ¢ = 10 -6 in the

computation.

This finishes the description of the fifth order finite difference WENO scheme [23] in the simplest ('ase.

As we can see, the algorithm is actually quite simple and there are no tunable parameters in the scheme.

We sunmlarize the properties of this WENO finite difference scheme. For details of proofs and numerical

verifications, see [23] and [41, 42].

1. The scheme is proven to be uniformly fifth order accurate including at smooth extrema, and this is

verified numerically.

2. Near discontinuities the scheme behaves very similarly to an ENO scheme [19, 43, 44], namely the

solution has a sharp and non-oscillatory discontinuity transition.

3. The numerical flux has the same smoothness dependency on its arguments ms that of the physical

flux f(u). This helps in a convergence analysis for smooth solutions and in steady state convergence.



4. Theapproximationisselfsimilar.Thatis,whenfullydiscretewithRunge-Kuttamethodsinsection
2,thesdmmeis invariantwhenthespatialandtimevariablesarescaledbytile samefactor.

Wethenindicatehowtheschenmisgeneralizedina moreconlplexsituation:
1. Forscalarequationswithoutthepropertyf'(u) _> 0, one could use a flux splitting

df +(u) >0, df-(u) <0,
f(u) = f+ (u) + f-(u), du - (.t,---7-- -

attd apply the procedure abram to f+(u), ax,d a mirror image (with respect to j + 1/2) procedure

to f-(u). The only requirement for the splitting is that f±(u) should be as smooth functions of

u as f(u) is and as the order of the schenm requires (e.g. if the scheme is fifth order, f(u) and

f+ (u) should all have five continuous derivatives with respect to u). In most applications tile simple

Lax-Friedrichs flux splitting

= _(f(u) :I: ,.,), _, = ma:r,,lf'(u)]l±(u)

where the maximum is taken over the relevant range of u, is a good choice.

2. For systems of hyperbolic conservation taws, the nonlinear part of the WEN() procedure (i.e. tile

determination of the smoothness indicators &. and hence the nonlinear weights u'i) should be carried

out in local characteristic fields. Thus one would first tirol an awwage uj+l/2 of uj and u)+_ (e.g.

the Roe average [37] which exists for many physical systems), and comtmte the left and right

eigenvectors of the ,lacobian f'('tlj+À/2) and put them into the rows of R -1 and the cohmmsj+1/2

of Rj+L/2 respectively, such that R -l '' j+l/2 f (uJ+l/2) Rj+I/2 = AJ+1/2 where Aj+1/2 is a diagonal

matrix containing the real eigenvalues of ft(ltg+l/2). One then transforms all the quantities needed

for evaluating the numerical flux fj+a/2 to the local characteristic fields by left nmltiplying them

with R-f+_/2, and then computes the numerical fluxes by the scalar procedure in each characteristic

field. Finally, the flux in the original physical space is obtained by left nmltiplying the numerical

flux obtained in the local characteristic fields with R.i+l/2.

3. If one has a non-uniform but smooth mesh, for example x. = z(() where (j is uniform and a'(()

has at least five continuous derivatives for the fifth order method, then one could use the chain

rule f(u), = f(u)_/x'(() and simply use the procedure above for uniform meshes to approximate

f(u)_. The metric derivative z'(_) should he either obtained through an analytical fornmla (if the

transformation x = a'(() is explicitly given) or by a finite difference approximation which is at least

fifth order accurate, for example again by a WENO approximation. Using this, one could use finite

difference WEN() schemes on smooth curvilinear coordinates in any space dimension.

4. WENO finite difference schemes are available for all odd orders, see [23] and [2] for the formulas of

the third order and seventh through eleventh order WENO schemes.

"¢_ present two numerical examples to illustrate the capability of the finite difference WENO schemes.

Both are obtained with the fifth order WENO schemes.

The first example is the double Mach reflection problem, originally given in [45] and later used often in

the literature as a benchmark. The computational domain is [0, 4] x [0, 1], although typically only the results

Initiallyin [0, 3] x [0, 1] are shown in the figures. The reflecting wall lies at the bottom, starting from x = g.

a right-moving Mach 10 shock is positioned at x = _,y = 0 and makes a 60 ° angle with the x axis. For the

I and a reflectivebottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x = g

boundary condition is used for the rest. At the top boundary, the flow values are set to describe the exact

motion of a Maeh 10 shock. The computation is carried out to t = 0.2. At a very refined resolution, the
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slip line induced instability and roll-up can be observed, see, e.g. the adaptive mesh simulation in [3]• The

capability of a numerical method to simulate these roll-ups is an indication of its small numerical viscosity

and high resolution. In Fig. 3.1, left, we give the density contours of the simulation result with the fifth

order WENO scheme on a fixed, uniform mesh with Ax = Ay = 1 In Fig. 3.1, right, we give the density9-g6"

contours of the simulation result with the fifth order WENO scheme on a non-uniform and moving mesh,

which is smooth and concentrates its points near the shock mid the region under the double Mach stem, with

only half the number of points in each direction (480 points in y). The mesh movements were determined

by a given smooth transformation which follows the structure of the solution• Fig. 3.2 gives a "zoomed in"

picture. We can clearly see that the resolutions are comparable while the moving non-uniform mesh version

uses only 1/4 as many 2D mesh points as the uniform one, hence saving a lot of computational effort.

The second example is the problem of a supersonic flow past a cylinder [23]. In the physical space, a

cylinder of unit radius is positioned at the origin on the x-y plane. The computational domain is chosex_ to

be [0, 1] x [0, 1] on the _-7] plane. The mapping between the computational domain and the physical domain

is:

x = (nx - (R_ - 1)_)cos(O(2q - 1)), y = (Ry - (Ry - 1)_) sin(O(2r/- 1)),

where R_ = 3, Ru = 6 and O = 5. Fifth order finite difference WENO and a uniform mesh of 60 x 8075"

points in the computational domain are used. The problem is initialized by a Mach 3 shock moving towards

the cylinder from the left,. Reflective boundary condition is imposed at the surface of the cylinder, i.e. at

= 1, inflow boundary condition is applied at _ = 0 and outflow boundary condition is applied at r! = 0, 1.

We present an illustration of the mesh in the physical space (drawn every other grid line), and the pressure

contour, in Fig. 3.3. We can clearly see that the finite difference WENO scheme can handle such curvilinear
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nleshes very well.

In sumnlary, we call say the following about finite difference WENO schemes:

1. They call only be used for regular geolne, try that can be covered either by uniform or smooth

curvilinear meshes. The snloothness of the inesh must be comparable with the order of accuracy of

the schenm in order to obtain a truly high order result.

2. If the computational problem allows for such meshes, then the finite difference WENO schemes are

good choices as they are easy to code and fast to conlpute, est)e('ially for multi dimensional problems.

Usually the fifth order WENO scheme is tile best choice, unless tile nature of the probleln asks for

higher orders of resolution.



3. The finite difference WENO schemes can also be used in an adaptive mesh environment, provided

that a smooth (in space and time) mesh can be generated. To generate such meshes is not. easy,

especially for higher order schemes where the requirement for the smoothness of the meshes is

stronger.

4. Finite volume WENO schemes. A finite volume scheme for a conservation law such as (1.1.1)

approximates an integral version of it. Thus, the computational domain is partitioned into a collection of

(:ells/ki, which ill 2D could be rectangles, triangles, etc., and the cell averages of the solution u

1 /_ u(x y,t)dxdy

are the numerically approximated quantities. If /"9 is a control volume, the semi-discrete finite volume

scheme of equation (1.t.1) is:

d 1 fo F.7_ds = 0 (4.4.1)

where F = (f, g), and n is the outward unit normal of the cell boundary 0Aj. The line integral in (4.4.1) is

typically discretized by a Gaussian quadrature of sufficiently high order of accuracy,

q

Jfo F.nds _ IOAjI___,;EF(_,(G_. t)).,_
_ k=l

and F(u(Gk, t)) • n is replaced hy a numerical flux (approximate or exact Riemann solver_). For example,

one could use the simple Lax-Friedrichs flux which is given by

1
r(u(ak,t)).,_ _ _ [(r(u-(ak,t)) + F(u +(ak,t)))-,,_ - a (u+(a_,t) - u-(ak,t))]

where a is taken as an upper bound for the eigenvalues of the Jacobian in the n direction, and u- and u +

are the values of u inside the cell /kj and outside the cell Aj (inside the neighboring (:ell) at the Gaussian

point Gk.

Clearl3", the success of the finite volume scheme depends crucially on a good "reconstruction" procedure,

which is the procedure to obtain high order and non-oscillatory approximations to the solution u at the

G aussian points along the cell boundary, u + (Gk, t), from the neighboring cell averages. Usually, this recon-

struction problem is handled in the following way: given a stencil of R - (,.+11(_+")2 cells, find a polynonfial of

degree r, whose cell average in each cell within the stencil agrees with the given cell average of u in that cell.

This gives a linear system of R equations and R unknowns (the coefficients of the polynomial when expanded

in a. certain basis), and, if it has a unique solution, the polynomial can be evaluated at. the Gaussian point

to get the approximation to u + (Gk, t). In practice, there are a lot of complications in this procedure, as not

all stencils result in a solvable or well conditioned linear system. One would often resort to a least square

procedure with more than the necessary numher of cells in the stencil to soh,e this problem, see, e.g. [20]. If

the cells are rectangles rather than triangles, then a tensor product polynomial and a tensor product stencil

would be much easier to work with [38].

A typical WENO finite volume scheme is constructed as follows:

1. We identify several stencils Si, i = 1,..., q, such that the control volume Aj belongs to each stencil.
q

We denote hy T = U ,5/ the larger stencil which contains all the cells from the q stencils.
i= 1
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2. _,_&obtaina (relatively)lowerorderreconstructionpolynomial,denotedby pi(:r), associated with

each of the stencils $i, for i = 1.... ,q. We also obtain a (relatively) higher order reconstruction

polynomial, denoted by P(x), associated with the larger stencil T.

3. We find the combination coefficients, also called linear weights, deuoted by "¥1, ... , ")'q, such that for

a Gaussian point Gt. on the cell boundary,

q

P(Ga.) = Z ?ipi(Ga.)
i= i

for all possihle given cell averages in the stencil. These linear weights depend on the nlesh geometry,

the point G_., and the specific reconstruction requirements, but not on the given cell averages in the

stencil.

4. We conlpute the smoothness indicator, denoted t)y ;:¢i, for each stencil Si, which measures how

smooth the fimction pi(x) is in the target cell Gj. Tile smaller this smoothness indicator _'3i, the

smoother the fimction pi(x) is in the target. ('ell. These smoothness indicators are obtained with the

same integral formulas as in the finite difference WENO schemes. The details can be found in [20]

and [38].

5. We comi)ute the nonlinear weights based on the smoothness indicators:

ff.'i "Y_-

wi - E,, '&_" '&a. (e + 3a.)-'

where "yk are the linear weights determined in step 3 above, and £ is again a small mmlt)er to avoid

the denominator to become 0 and is usually taken as e = 10 -_ in the computations. The final

WENO reconstruction is then given by

q

u- (Gk) = __, wip_(a_.).
i=1

We summarize tim properties of this WENO finite volume scheme. For more details, see [20] and [38].

1. For 2D triangulation with arbitrary triangles, third and fourth order finite volume WEN() schemes

are available, [20], [38]. The third order scheme is quite robust. The fourth order scheme, however,

seems to have more restrictive requirements on the triangulation for stal)ility for solving systems of

conservation laws.

2. For 2D triangulation with tensor product rectangle meshes, which could be non-uniform an(t non-

smooth, the fifth order WENO scheme in [38] is quite robust and gives very good numerical results.

We will again use the double Mach reflection problem to illustrate the behavior of the finite volume

WENO schemes. To save space we will show only the results obtained with the fifth order finite volume

J [38], in Fig. 4.1. ResultsWENO scheme on a tensor product mesh, with a uniform mesh of Ax = Ay =

obtained with the third arid fourth order WENO schemes on triangular meshes can be found in [20].

In summm'y, we can say the following about finite volume WENO schemes:

1. The)" can be used for arbitrary triangulation. However they ar(_ nmch more complex to code and

nmch more expensive in CPU cost than finite difference WENO schemes of the same order of

accuracy. This is because they have to rely on multidimensional reconstructions (polynomials of 2

or 3 variables in 2D or 3D), and the flux integrals on the (:ell t)oundaries must be performed by nmlti

point Gaussian quadratures. As a rule of thumb, a finite volume WENO scheme is at least 4 times

more expensive in 2D and 9 times more expensive in 3D, compared with a finite difference WENO

1!



FIC. "1.1. Double Mach tvfleetion, fifth order finite volume WENO scheme, uniform mesh with A_r = Ay = 1 Left."_-6 "

den,sit_. I contours; Right: a "zoomed in" version of the density contours.

scheme oll the same mesh and of the same order of accuracy, see, e.g. [5] for such a comparison for

ENO schemes.

2. Finite volume WEN() sct_emes on a tensor product mesh are more robust and can be constructed

for higher order of accuracy than finite volume WENO schemes on arbitrary triangulation.

3. Finite volume WENO schemes should be used in the situation when it is impossible to apply a

smooth curvilinear mesh.

5. Discontinuous Galerkin methods. Similar to a finite volume scheme, a discontinuous Galerkin

(DG) method for a conservation law such as (1.1.1) also approximates an integral version of it. The compu-

tational domain is again partitioned into a collection of cells Ai, which in 2D could be rectangles, triangles,

etc., and the. numerical solution is a t)olynomial of degree r in each cell Ai. The degree r eouht change

with the cell, and there is no continuity requirement of the two polynomials along an interface of two cells.

Thus, instead of only one degree of freedom per cell in a finite volume scheme, namely the cell average of

the solution, there are R - I_+J)(_+2) degrees of fi'eedom per cell for a DG method using piecewise r-th2

degree polynomials in 2D. These R degrees of freedom are chosen as the coefficients of the polynomial when

expanded in a local basis. ()lue could use a locally orthogonal basis to simplify the computation., but this is

not essential.

The DG method is obtained by multiplying (1.1.1) by a test function v(x, y) (which is also a polynomial

of degree r in the (:ell), integrating over the (:ell A j, and integrating by parts:

dt j j zx,

where the notation mid the treatment of the line integral are the same as in the finite volume scheme (4.4.1).

The extra volume integral term fzxj F(u) • Vv dxdy can be computed either by a numerical quadrature or

by a quadrature free implementation [1] for special systems such as the Euler equations (1.1.1). Notice that
d

if a locally orthogonal basis is chosen, the time derivative term ?7 fzx, u(x, y, t)v(x, y)dzdy would be explicit

and there is no mass matrix to invert. However, even if the local basis is not orthogonal, one still only needs

to invert a small R x R local mass matrix (by hand) and there is never a global mass matrix to invert as in

a typical finite element method.

When applied to problems with smooth solutions, the DG method, as briefly described above, can

already be used as is. For problems containing discontinuous solutions, however, a nonlinear total variation

bounded (TVB) limiter might be needed. For details, see [39, 6, 8, 9].

We summarize the properties of the DG method here. For more details, see [11].

12



Rectangles P2, A x = ,'_ y = 11480

Rectangles P2, A x = A y = 1/480

FIG. 5.1. Double Mach refleetion, third order (p2 polynomials) discontinuous Galerkin method, r_zctangular uniform mesh

t Left: density contour,s: Right: a "zooro, ed in" version of the density contours.with Ax = _y = Tff-6"

1. Tile DG method has the best provable stability property among all three methods discussed in this

paper. One can prove a cell entropy inequality for the square entropy [22], which implies L e stability

for the full nonlinear case with possible discontinuous solutions, and any converged solution is an

entropy solution for a conw_x scalar conservation law. This cell entropy inequality holds for all scalar

nonlinem" conservation laws, all orders of accuracy of the scheme, all space dimensions, arbitrary

triangulation, and without the need to use the nonlinear limiters.

2. The DG method can also be used on problems with second derivatives (diffusion terms such as those

from the Navier-Stokes equations), [10], [34]. It can ew,n t>e used on problems with third derivative

terms [46]. Theoretical results about stability and rate of convergence are very sixnilar to those for

the first derivative PDEs. Utdike the traditional mixed method, such local discontinuous Galerkin

methods fi)r higher derivatives are truly local (the auxiliary variables introduced for the derivatives

can be eliminated locally) and share with the discontinuous Galerkin method all the flexibility and

advantages such as a tolerance of arbitrary triangulation with hanging nodes, parallel efficiency,

easiness in h-p adaptivity, etc.

We will again use the double Mach reflection problem to illustrate the behavior of the DG methods. We

present the result of the third order method (piecewise quadratic polynomials) on a rectangular mesh with

-_x = _'.q = l_-6 [9], in Fig. 5.1.

In summary, we can say the following about the discontinuous Galerkin methods:

1. They can be used for arbitrary triangulation, including those with hanging nodes. Moreover, the de-

gree of the polynomial, hence the order of accuracy, in each cell can be independently decided. Thus

the method is ideally suited for h-p (mesh size and order of accuracy) refinements and adaptivity.

2. The methods have excellent parallel efficiency. Even with space time adaptivity and load balancing

the parallel efficiency can still be over 80_,

3. They should be the methods of choice if geometry is complicated or if adaptivity is important.

especially for problems with smooth solutions.

4. For problems containing strong shocks, the nonlinear limiters are still less robust than the advanced

WENO philosophy. There is a parameter (the TVB constant) for the user to tune for each problem.

For rectangular meshes the limiters work better than for triangular ones. Other limiters are still

being investigated in the literature.

6. Concluding remarks. We have discussed three classes of typical high order numerical methods

used in CFD, especially for probleins containing both shocks or high gradient regions and complex smooth

region structures. These are finite difference WEN() schemes, finite volume WENO schemes and discontin-
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uous Galerkin methods. All three methods use the same nonlinearly stable high order Runge-Kutta time

diseretizations [43], hence their difference is only in spatial discretizations. Finite difference WENO schemes

have the advantage of simplicity and lower CPU cost, especially for multi dimensional problems, but the)'

can only be applied on smooth structured curvilinear meshes. If a computational problem allows the usage

of such meshes, finite difference WEN() schemes are good choices. In this class the one used most often is

the fifth order WENO scheme in [23]. Finite volume WENO schemes are more expensive than their finite

difference counter parts. However, they do have the advantage of allowing arbitrary triangulation, at least

in principle. For two dimensional triangulation with arbitrary triangles, WENO finite volume schemes of

third and fourth order accuracy are available [20], [38]. The third order version is quite robust, however the

fourth order version seems to have more restrictive requirements on the type of triangulation for stability.

Higher order versions and three dimensional cases are still under development. For structured meshes, finite

volume WENO schemes of fifth order accuracy [38] are very robust and allow for arbitrary, non-smooth mesh

sizes, hence they can be used in more general situations than the finite difference WEN() schemes. Finally,

the discontinuous Galerkin method is the most flexible in terms of arbitrary triangulation and boundary

conditions. It is ideally suited for problems with smooth solutions. For problems containing shocks, the

total variation bounded limiter [39, 6, 8, 9] works quite well for rectangular meshes, and reasonably well for

arbitrary triangulation. However they are still less robust than WENO schemes a_q they contain a tuning

parameter. An active research direction now is the search for a more robust and high order preserving limiter

for general triangulation.
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